Comparison between the bioavailability of nutrients processed by High Pressure Processing (HPP) and Thermal Processing (TP)

Food system	Compound	PROCESSING	RESULTS	References
Kale-based juice	β-carotene Lutein	HPP: 500 MPa, 3 min, 35 °C TP: 90 °C, 0.5 min	Higher nutrient concentration in HPP. No statistical differences in bio- accessibility or uptake.	(Zhong et al., 2019)
Fruit smoothie (with milk or soymilk)	Calcium Phosphorus	HPP: 400 MPa, 5 min, 36 °C TP: 90 °C, 0.5 min	Calcium and phosphorus bio- accessibility improved by HPP and higher than TP. Calcium uptake efficiency of calcium by caco-2 cells depends on the matrix. In the case of phosphorus HPP is better.	(Cilla et al., 2011)
Fruit smoothie (with milk or soymilk)	Tocopherols Carotenoids Vitamin C	HPP: 400 MPa, 5 min, 40 °C TP: 90 °C, 0.5 min	Higher retention of α and γ - tocopherol with TP. Higher retention with HPP of δ - tocopherol. Higher bio-accessibility of all tocopherol with HPP. The concentration and the bio- accessibility of carotenoids depends on the matrix (HPP improved bio-accessibility in soy-based juice comparatively to control). Higher retention of ascorbic acid in HPP but improved bio- accessibility in TT.	(Cilla et al., 2012)
Fruit Juice (with water, milk or soymilk)	Carotenoids Antioxidant activity	HPP: 400 MPa, 5 min, 40 °C TP: 90 °C, 1 min	Higher concentration and bioavailability of all carotenoids with HPP. Higher antioxidant effect with HPP and TP after digestion.	(Rodríguez-Roque et al., 2016)
Fruit Juice (with water, milk or soymilk)	Vitamin C Phenolic compounds Antioxidant activity	HPP: 400 MPa, 5 min, 40 °C TP: 90 °C, 1 min	Higher concentration and bio- accessibility of all phenolic compounds and vitamin C with HPP. Higher antioxidant activity with HPP after digestion.	(Rodríguez-Roque et al., 2015)
Carrot pieces	β-carotene	HPP: 500 MPa, 16 min, 25 °C HPP: 600 MPa, 10 min, 45 °C TP: 70 °C, 2 min TP: 90 °C, 10 min	No statistical differences between HPP and TP in total β - carotene concentration. Bio-accessibility higher in mild HPP than mild TP, but higher in strong TP than strong HPP.	(Knockaert et al., 2011)

Food System	Compound	PROCESSING	RESULTS	References
Carrot puree	β-carotene	HPP: 600 MPa, 20 min, 45 °C TP: 90 °C, 10 min	Higher concentration and bio- accessibility of total β -carotene and <i>trans</i> - and <i>cis</i> - β -carotene in TP. (Note: HPP did not decrease bio-accessibility comparatively to control).	(Knockaert et al., 2012)
Tomato juice	β-carotene Lycopene	HPP: 500-700 MPa, 0-10 min, 30 °C TP: 100 °C, 0-10 min	Higher bio-accessibility of <i>all-trans-β</i> -carotene in HPP (in the <i>digesta</i>). No statistical differences in the micelles, both in raw and hot-break juice. Lycopene content in the <i>digesta</i> was not different in HPP and TP raw and hot-break juice, but was higher in the micelles with TP (hot-break juice).	(Gupta et al., 2011)
Tomato puree	Lycopene	HPP: 450 MPa, 15 min, 20 °C HPP: 600 MPa, 20 min, 45 °C TP: 60 °C, 1 min TP: 90 °C, 10 min	No statistical differences in lycopene isomers concentration with mild pasteurization (HPP & TP). Higher concentration of <i>trans</i> isomers with intense HPP than intense TP. Higher concentration of <i>cis</i> isomers with intense TP than intense HPP. No statistical differences between treatments in the bio- accessibility of lycopene.	(Knockaert et al., 2012)

For questions about this table, please contact:

Mario González Angulo

Applications and Food Processing Specialist m.gonzalez@hiperbaric.com +34 607 012 747

References

- Cilla, A., Alegría, A., De Ancos, B., Sánchez-Moreno, C., Cano, M. P., Plaza, L., ... Barberá, R. (2012). Bioaccessibility of tocopherols, carotenoids, and ascorbic acid from milk- and soy-based fruit beverages: Influence of food matrix and processing. *Journal of Agricultural and Food Chemistry*, *60*(29), 7282–7290. https://doi.org/10.1021/jf301165r
- Cilla, A., Lagarda, M. J., Alegría, A., de Ancos, B., Cano, M. P., Sánchez-Moreno, C., ... Barberá, R. (2011). Effect of processing and food matrix on calcium and phosphorous bioavailability from milk-based fruit beverages in Caco-2 cells. *Food Research International*, 44(9), 3030–3038. https://doi.org/10.1016/j.foodres.2011.07.018

- Gupta, R., Kopec, R. E., Schwartz, S. J., & Balasubramaniam, V. M. (2011). Combined pressure-temperature effects on carotenoid retention and bioaccessibility in tomato juice. *Journal of Agricultural and Food Chemistry*, *59*(14), 7808–7817. https://doi.org/10.1021/jf200575t
- Knockaert, G., De Roeck, A., Lemmens, L., Van Buggenhout, S., Hendrickx, M., & Van Loey, A. (2011). Effect of thermal and high pressure processes on structural and health-related properties of carrots (Daucus carota). *Food Chemistry*, 125(3), 903–912. https://doi.org/10.1016/j.foodchem.2010.09.066
- Knockaert, G., Lemmens, L., Van Buggenhout, S., Hendrickx, M., & Van Loey, A. (2012). Changes in β-carotene bioaccessibility and concentration during processing of carrot puree. *Food Chemistry*, 133(1), 60–67. https://doi.org/10.1016/j.foodchem.2011.12.066
- Knockaert, G., Pulissery, S. K., Colle, I., Van Buggenhout, S., Hendrickx, M., & Loey, A. Van. (2012). Lycopene degradation, isomerization and in vitro bioaccessibility in high pressure homogenized tomato puree containing oil: Effect of additional thermal and high pressure processing. *Food Chemistry*, 135(3), 1290– 1297. https://doi.org/10.1016/j.foodchem.2012.05.065
- Rodríguez-Roque, M. J., de Ancos, B., Sánchez-Moreno, C., Cano, M. P., Elez-Martínez, P., & Martín-Belloso, O. (2015). Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. *Journal of Functional Foods*, 14, 33–43. https://doi.org/10.1016/j.jff.2015.01.020
- Rodríguez-Roque, M. J., De Ancos, B., Sánchez-Vega, R., Sánchez-Moreno, C., Cano, M. P., Elez-Martínez, P., & Martín-Belloso, O. (2016). Food matrix and processing influence on carotenoid bioaccessibility and lipophilic antioxidant activity of fruit juice-based beverages. *Food and Function*, 7(1), 380–389. https://doi.org/10.1039/c5fo01060h
- Zhong, S., Vendrell-Pacheco, M., Heskitt, B., Chitchumroonchokchai, C., Failla, M. L., Sastry, S., ... Kopec, R. E. (2019). Novel Processing Technologies as Compared to Thermal Treatment on the Bioaccessibility and Caco-2 Cell Uptake of Carotenoids from Tomato and Kale-based Juices. *Journal of Agricultural and Food Chemistry*, acs.jafc.9b03666. https://doi.org/10.1021/acs.jafc.9b03666